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Abstract

Neuroimaging research has largely focused on the identification of associations between brain activation and specific
mental functions. Here we show that data mining techniques applied to a large database of neuroimaging results can be
used to identify the conceptual structure of mental functions and their mapping to brain systems. This analysis confirms
many current ideas regarding the neural organization of cognition, but also provides some new insights into the roles of
particular brain systems in mental function. We further show that the same methods can be used to identify the relations
between mental disorders. Finally, we show that these two approaches can be combined to empirically identify novel
relations between mental disorders and mental functions via their common involvement of particular brain networks. This
approach has the potential to discover novel endophenotypes for neuropsychiatric disorders and to better characterize the
structure of these disorders and the relations between them.
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Introduction

The search for clues regarding the underlying causes of mental

disorders has led to the notion that these disorders may be best

understood in terms of a set of underlying psychological and/or

neural mechanisms that stand between genes and environment on

the one hand and psychiatric diagnoses on the other hand. Such

intermediate phenotypes, or ‘‘endophenotypes’’, may provide the

traction that has eluded research using diagnostic categories as

primary phenotypes [1,2]. They may also provide the means to

better understand the structure the underlying psychological

dimensions that appear to underlie overlapping categories of

mental disorders [3,4].

The identification of endophenotypes requires an understanding

the basic structure of mental functions and their associated brain

networks. For more than 30 years, cognitive neuroscientists have

used neuroimaging methods (including EEG/MEG, PET, and

fMRI) in an attempt to address this question. This work has led to

a large body of knowledge about associations between specific

psychological processes or tasks and activity in brain regions or

networks. However, this knowledge has not led to a commensurate

improvement in our understanding of the basic mental operations

that may be subserved by particular brain systems. Instead, diverse

literatures often assign widely varying functions to the same

networks. A prime example is the anterior cingulate cortex, which

has been associated with such widespread functions as conflict

monitoring, error processing, pain, and interoceptive awareness.

In order to understand the unique functions that are subserved by

brain regions or networks, a different approach is necessary;

namely, we need to analyze data obtained across a broad range of

mental domains and understand how these domains are organized

with regard to neural function and structure.

The identification of basic operations can be understood

statistically as a problem of latent structure identification; that is,

what are the latent underlying mental functions and brain

networks that give rise to to the broad range of observed behaviors

and patterns of brain activity and neuropsychiatric disorders? The

focus within cognitive neuroscience on establishing associations

between activation and specific hypothesized processes has

hindered the ability to identify such latent structures. However,

within the fields of machine learning and text mining, a number of

powerful approaches have been developed to estimate the latent

structure that generates observed data, assuming that large enough

datasets are available. In the present work, we take advantage of

one class of such generative models to develop a new approach to

identifying the underlying latent structure of mental processing

and the associated brain functions, which we refer to as ‘‘topic

mapping’’. We examine the latent conceptual structure of the

fMRI literature by mining the full text from a large text corpus

comprising more than 5,800 articles from the neuroimaging

literature, and model the relation between these topics and

associated brain activation using automated methods for extract-

ing activation coordinates from published papers. This analysis

uncovers conceptual structure and activation patterns consistent

with those observed in previous neuroimaging meta-analyses,

which provides confirmation of the approach, while also providing
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some novel suggestions regarding structure/function relationships.

We then use this approach to identify the topical structure of terms

related neuropsychiatric diseases, and use multivariate methods to

identify relations between these the mental and disorder domains

based on common brain activation patterns. This approach

provides an empirical means of discovering novel endophenotypes

that may underlie mental disorders, as well providing new insights

into the relations between diagnostic categories.

Within the fields of information retrieval and computer science,

research into document retrieval has led to the development of a

set of techniques for estimating the latent structure underlying a set

of documents. Early work in this area treated documents as vectors

in a high-dimensional space, and used matrix decomposition

techniques such as singular value decomposition to identify the

latent semantic structure of the documents [5]. More recently,

researchers in this domain have developed approaches that are

based on generative models of documents. One popular approach,

known generically as ‘‘topic models’’ [6], treats each document as

a mixture of a small number of underlying ‘‘topics’’, each of which

is associated with a distribution over words. Generating a

document via this model involves sampling a topic and then

sampling over words within the chosen topic; using Bayesian

estimation techniques, it is possible to invert this model and

estimate the topic and word distributions given a set of documents.

The particular topic modeling technique that we employ here,

known as latent Dirichlet allocation (LDA: [7]), has been shown to

be highly effective at extracting the structure of large text corpuses.

For example [8], used this approach to characterize the topical

structure of science by analyzing 10 years of abstracts from PNAS,

showing that it was able to accurately extract the conceptual

structure of this domain.

Results

We characterized the latent structure of the cognitive neurosci-

ence literature by applying latent Dirichlet allocation to a corpus

of 5,809 articles (using an expanded version of the corpus

developed in [9]), which were selected on the basis of reporting

fMRI activation in a standardized coordinate format. An overview

of the entire data processing workflow is presented in Figure 1.

This technique estimates a number of underlying latent ‘‘topics’’

that generate the observed text, where each topic is defined by a

distribution over words. The dimensionality (i.e., number of topics)

is estimated using a cross-validation approach; the documents are

randomly split into 8 sets, and for each set a topic model is trained

on the remaining data and then used to estimate the empirical

likelihood of the held-out documents [10]. Plots of the empirical

likelihood of left-out documents as a function of the number of

topics are shown in Figure 2, and histograms of the number of

documents per topic and number of topics per document are

shown in figure 3.

Initial application of LDA to the full-text corpus identified a

number of topics that were related to mental function, but also

many topics related to methodological or linguistic aspects of the

documents. Because we were specifically interested in estimating

the conceptual structure of mental processes, we examined each

document in the corpus and identified each occurrence of any of

the 605 terms (both single words and phrases) that are present as

mental concepts in the Cognitive Atlas (http://www.

cognitiveatlas.org); the topic model was then estimated using this

limited word set (treating each word or phrase as a single-word

token). The Cognitive Atlas is a curated collaborative ontology

that aims to describe mental functions, and contains terms

spanning across nearly all domains of psychological function

[11]. The cross-validation analysis identified 130 as the optimal

number of topics for this dataset. Examples of these topics are

shown in Figure 4, and the full list is presented in Table S1. In

large part these topics are consistent with the topics that are the

focus of research in the cognitive neuroscience literature. The

topics with the highest number of associated documents were those

related to very common features of neuroimaging tasks such as

movement (topic 20), emotion (topic 93), audition (topic 74),

attention (topic 43), and working memory (topic 61). Each of these

was associated with more than 400 documents in the corpus. At

the other end of the spectrum were more focused topics that

loaded on fewer than 200 documents, such as topic 121

(regret,surprise), topic 71 (narrative, discourse), and topic 108

(empathy, pain). The results of this analysis suggest that topic

modeling applied to the limited term set of mental functions can

successfully extract the conceptual structure of psychological

processes at multiple levels within the current text corpus.

In order to further examine the effects of topic dimensionality,

we compared the results obtained across several values for the

number of topics (10,50, 100, and 250). We chose the term

‘‘language’’ and identified all topics for each model in which that

term occurred in the top five terms. We then examined the

correlation in the loading vector across documents for each set of

levels, in order to identify the hierarchical graph relating topics

across levels (see Figure 5). This analysis showed that increasing

the topic dimensionality resulted in finer-grained topics; for

example, with 10 topics there was a single matching topic that

included ‘‘meaning’’, ‘‘reading’’, and ‘‘comprehension’’, whereas

each of these was split into a separate set of topics in the 50-topic

model, and further subdivided as the dimensionality increased.

This suggests that although the cross validation resulted in a

particular ‘‘best’’ dimensionality, in reality there is relevant

information at many different levels which differs in grain size.

Topic mapping
Using the topical structure of the literature discovered in the

previous section, we developed a novel approach called topic

mapping in which we identify the relationship between brain

activation and topic loading in order to characterize the neural

systems associated with these topics. The distribution of topics

across documents was used to identify the neural substrates of each

topic across all of the studies in the corpus. For each paper in the

database, the reported activation coordinates were obtained from

Neurosynth (http://www.neurosynth.org), a database of coordi-

nates automatically extracted from 5,809 articles [9]. Neural

activation for each study was then reconstructed by placing a

10 mm sphere at each activation coordinate reported in the paper.

Author Summary

One of the major challenges of neuroscience research is to
integrate the results of the large number of published
research studies in order to better understand how
psychological functions are mapped onto brain systems.
In this research, we take advantage of a large database of
neuroimaging studies, along with text mining methods, to
extract information about the topics that are found in the
brain imaging literature and their mapping onto reported
brain activation data. We also show that this method can
be used to identify new relations between psychological
functions and mental disorders, through their shared brain
activity patterns. This work provides a new way to discover
the underlying structure that relates brain function and
mental processes.

Topic Mapping
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This resulted in a binary reconstructed activation map. The

document-topic distribution obtained from the topic model for

each topic was binarized and used to perform a chi-squared test

measuring the association between topic loading and brain

activation at each voxel in the brain. Voxels were excluded if

the minimum expected frequency under independence was less

than 5. Correction for multiple tests across voxels was performed

using the voxelwise false discovery rate correction (qv0.01) [12]

on the p-values obtained from the chi-squared test.

Figure 4 shows examples of topic maps obtained from this

analysis using the 130 topics obtained from the Cognitive Atlas

topic model. These maps are largely concordant with known

functional neuroanatomy. For example, topic 43 (with terms

related to visual attention) was associated with activity in the

bilateral lateral occipital cortex, parietal cortex, and frontal cortex.

Topic 86 (with terms related to decision making and choice) was

associated with regions in the ventral striatum, medial, orbital, and

dorsolateral prefrontal cortex. Topic 93 (with terms related to

emotion) was associated with bilateral activity in the amygdala,

orbitofrontal cortex, and medial prefrontal cortex. These results

highlight the fact that this unsupervised approach obtains results

that are consistent with the known literature. The topics varied

substantially in the extent of significant association; although this

may in some cases reflect lower power for topics that are

associated with a smaller number of documents, in many cases

topics with similar numbers of documents showed very different

degrees of association (e.g., topic 86 vs. 93). It should be noted that

in all cases the associations were very strong, with p-values usually

Figure 1. A schematic overview of the data processing pipeline used in the analyses presented here.
doi:10.1371/journal.pcbi.1002707.g001

Topic Mapping
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Figure 3. Histograms of the number of topics per document (top row) and documents per topic (bottom row) for cognitive terms
(left column) and disorder terms (right column).
doi:10.1371/journal.pcbi.1002707.g003

Figure 2. Plots of the average empirical likelihood of the left-out document sets across cross validation folds, for cognitive terms
(left) and disorder terms (right).
doi:10.1371/journal.pcbi.1002707.g002
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below pv10{5. Thus, differences between these maps likely

reflect real differences in the extent of activation observed across

the literature for these different concepts.

While concordance with the existing literature is reassuring, the

true promise of this approach is in its ability to uncover novel

associations between functions and activation, and the topic

mapping analysis did in fact identify some unexpected associations,

particularly when looking at negative associations. Two interesting

examples are evident in Figure 4. First, topic 61 was associated

with the bilateral fronto-parietal network usually associated with

working memory, but it also exhibited strong and focused negative

association in the right amygdala; this means that the amygdala

was significantly less likely to be activated in studies that loaded on

this topic relative to those that did not. This is particularly

interesting in light of further exploration of the literature using the

PubBrain tool (http://www.pubbrain.org) which identified a

number of studies that have noted amygdala activation in

association with working memory tasks (cf. [13]). Another example

is topic 71 (associated with auditory processing) which was

negatively associated with activation in a broad set of regions

previously implicated in emotional function, such as orbitofrontal

cortex, striatum, and amygdala. Whether such negative associa-

Figure 4. Examples of mental function topics and associated topic maps. The left panel shows the top words associated with each topic,
and the right panel shows a map of voxels that were significantly associated with loading on that topic across documents. The image intensity is
proportional to the Pearson correlation between the activation vector and the topic loading vector at each voxel (with red-yellow depicting positive
correlations and blue-white depicting negative correlations), thresholded using a whole brain false discovery rate of qv.01. The topics are shown in
order of descending number of documents with nonzero loadings on the topic; those at the top showed loading on a relatively small number of
documents, whereas those at the bottom showed loading across a broader set of documents. The images are presented in radiological convention
(i.e., left-right reversed).
doi:10.1371/journal.pcbi.1002707.g004

Topic Mapping
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tions reflect truly negative relations in activation between these

networks or reflect features of the tasks used in these domains

remains to be determined, but such unexpected associations could

suggest novel hypotheses about relations between specific brain

networks. These are only two examples of potential novel

discoveries using Topic Mapping.; future studies will be needed

to systematically examine all possible new findings emerging from

the usage of this tool.

Mapping the neural basis of neuropsychiatric disorders
Based on the results from the foregoing analyses, we then

examined whether it was possible to obtain new insights about the

organization of brain disorders using the topic mapping approach

developed above. We estimated a set of topics using only terms

related to brain disorders, based on a lexicon of mental disorders

terms derived from the NIFSTD Dysfunction ontology [14] along

with the DSM-IV. The optimal dimensionality of 60 based on

cross-validation was found to produce multiple topics with exactly

the same word distribution, so we used the largest number of

topics yielding a unique set of word distributions across topics,

which was 29 topics. Examples of these topics and the associated

topic maps are presented in Figure 6.

The results of this analysis are largely consistent with results

from prior meta-analyses and known functional anatomy of the

various disorders, but are novel in highlighting relations between

some of the disorders. For example, Topic 7 demonstrates the

relations between bipolar disorder, schizophrenia, and mood

disorders, with activation centered on the medial prefrontal cortex,

basal ganglia, and amygdala. Topic 8 highlights relations between

obesity and eating disorders and drug abuse, with activation in the

ventral striatum and ventromedial prefrontal cortex. Topic 14

demonstrates relations between a set of externalizing disorders

(drug abuse, conduct disorder, alcoholism, antisocial personality

disorder, and cannabis related disorder) with activation focused in

the striatum, amygdala, orbitofrontal cortex, and dorsal prefrontal

cortex. Conversely, Topic 25 demonstrates relations between a set

of internalizing disorders (anxiety disorder, panic disorder, phobia,

obsessive compulsive disorder, agoraphobia, and post traumatic

stress disorder), with a very similar pattern of activation, though

notably weaker in the striatum. One striking result of these

analyses is the similarity of the patterns of brain activity associated

with the mention of all of these different disorders. This could arise

either from the fact that this particular set of limbic brain systems

is the seat of all major psychiatric disorders, or the fact that these

disorders are commonly mentioned in relation to tasks or cognitive

domains that happen to preferentially engage these brain systems.

We further characterized the relations between different

disorder concepts in their associated neural activations by

clustering the disorder topics based on their associated brain

activation patterns using hierarchical clustering. The results of this

analysis are shown in Figure 7. The results show the degree to

which the neural patterns associated with the use of particular sets

of mental disorder terms exhibit a consistent systematic structure.

The clustering breaks into four large groups, comprising language

disorders, mood/anxiety disorders and drug abuse, psychotic

disorders, and autism and memory disorders. What is particularly

interesting is that, although none of the topic maps associated with

the term ‘‘schizophrenia’’ showed strong activation, the fact that

they cluster together in this analysis suggests that they are

nonetheless similar in the patterns of activation that are reported

in the associated papers; however, this could also reflect the fact

that a relatively small number of tasks is used in the literature, and

thus any concordance could be driven by overlap of tasks that are

commonly mentioned in the context of schizophrenia. Despite

such limitations, these results provide further confirmation that the

present analysis, while largely based on studies involving healthy

adults, can nonetheless accurately characterize the neural basis of

mental disorders as described in the literature.

Empirical discovery of endophenotypes
It has commonly been proposed that cognitive functions and

neural systems may serve as endophenotypes for neuropsychiatric

disorders. We assessed whether it was possible to empirically

discover candidate endophenotypes using a multivariate approach

to identify sets of mental concepts and disorder terms that were

closely associated via their respective activation patterns. We used

an ‘1-penalized non-negative version of canonical correlation

analysis (CCA) [15] to identify novel relations between sets of

mental functions and sets of neuropsychiatric disorders, based on

their associated topic maps. The sparsity penalty was used in order

to identify components that are associated with small numbers of

topics, in order to improve the interpretability of the resulting

canonical variates. This analysis identified 8 sets of disorders and

cognitive functions that were related via their associated patterns

of activation. The results, shown in Table 1, highlight some

interesting relations between the different disorders and psycho-

logical functions.

The first canonical variate (#0) demonstrated associations

between a number of both internalizing and externalizing

disorders (anxiety, depression, obesity, gambling) which were

centered around the involvement of emotional processes (such as

mood and fear) and reward-related decision processes. Another

canonical variate (#1) was focused on memory processes, and

identified a cluster of disorders including classical memory

disorders (amnesia and Alzheimer’s disease) as well as schizophre-

nia. Another (#2) focused on language processes and was

associated with activity in left prefrontal, temporal, and parietal

regions.

The results of the CCA analysis provide a potential new window

into the complex psychological and neural underpinnings of

schizophrenia and its relation to other psychiatric disorders. Across

different canonical variates, schizophrenia is related to mood and

decision making processes (components 0 and 3), memory

processes (component 5), and social perception (component 10).

These could potentially relate to different aspects of schizophrenic

symptomatology, such as the distinctions between positive versus

negative symptoms or between cognitive versus affective impair-

ments. Further, they provide novel potential targets for genetic

association studies, which have struggled to identify meaningful

and replicable associations between schizophrenic symptoms or

endophenotypes and genetic polymorphisms (cf. [16]).

We also performed CCA directly using topic-document loading

vectors, in order to determine whether the results differed from

CCA computed on neural loading vectors; the results are

presented in Table 2. The results of this analysis are quite

concordant with the foregoing analyses based on activation

Figure 5. A hierarchical graph depicting topics involving the term ‘‘language’’ across multiple topic dimensionalities. All topics with
‘‘language in their top 5 terms were first identified from the results for topic models fit to the data at 10, 50, 100, and 250 topics. At each level, each
topic is linked to the topic at the previous level with which it had the highest correlation in its document loadings. The values on each edge reflect
the correlation in the topic loading vector across documents between the two levels.
doi:10.1371/journal.pcbi.1002707.g005
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patterns, but one noticeable difference between the two analyses is

that the activation-based CCA analysis appeared to cluster

disorders more broadly, whereas many of the components found

in the text-based analysis had only a single disorder. This may

reflect the fact that disorders are less neurally distinct than is

suggested by what is written by authors, but could also reflect

greater noise in the neural data; further work will be necessary to

better understand the unique contributions of activation-based

and text-based analyses.

Discussion

It is clear that neuroimaging can provide important evidence

regarding the functional organization of the brain, but one of the

most fundamental questions in cognitive neuroscience has been

whether it can provide any new insights into psychological

function [17–19]. The results presented here demonstrate how

large databases of neuroimaging data can provide new insights

into the structure of psychological processes, by laying bare their

relations within a similarity space defined by neural function. The

present results highlight the importance of ‘‘discovery science’’

approaches that take advantage of modern statistical techniques to

characterize large, high-dimensional datasets (cf. [20]). Just as the

fields of molecular biology and genomics have been revolutionized

by this approach [21], we propose that the hypothesis-generating

approach supported by data mining tools can serve as a powerful

complement to more standard hypothesis-testing approaches [22].

There is growing recognition that the diagnostic categories used

in psychiatry are not reflective of sharp parallel biological

distinctions; instead, a growing body of behavioral, genetic, and

neuroimaging data suggest that these different disorders fall along

a set of underlying continuous dimensions which likely relate to

particular basic psychological processes [3,4]. The results present-

ed here are consistent with that viewpoint, and further show how

endophenotypes for groups of disorders can be empirically

discovered via data mining, even if those disorders were not the

primary aims of the studies being mined. This approach would

likely be even more powerful using databases that were focused on

Figure 6. Examples of topic maps based on a topic model limited to disorder-related terms. Topics are ordered in terms of the number of
documents loading on the topic; color maps reflect the correlation coefficient between topic loading and activation across documents. The images
are presented in radiological convention (i.e., left-right reversed).
doi:10.1371/journal.pcbi.1002707.g006
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imaging data from studies of patients. In addition, this approach

has the potential to characterize the genetic architecture of these

disorders through mining of genetic association data; unfortunate-

ly, genetic terms are not sufficiently frequent in the Neurosynth

database to support robust mapping of relationships to genes, but

future analyses using enhanced databases has the potential to

discover additional relations between neurocognitive components

and genetic contributions.

The present work is limited by several features of the data that

were used in the analyses. The first limitation arises from the fact

that we rely upon the presence of particular terms in the text,

rather than on manual annotation of the relevance of those terms.

Thus, obvious issues such as polysemy (e.g., the multiple senses of

the term ‘‘working memory’’) and negation can be problematic,

though these issues could potentially be addressed using more

powerful natural language processing. A second limitation arises

from the meta-analytic nature of the activation data used in the

analyses, which are reconstructed from a very sparse representa-

tion of the original data. A third limitation is that the activation

maps are associated only with complete documents, not with

specific terms within the document, and this coarseness undoubt-

edly adds a significant amount of noise to the modeling results.

These limitations necessitate caution in drawing strong conclusions

from the results reported here. At the same time, the concordance

of many of the results with previous analyses using different

datasets and analysis approaches suggests that these limitations

have not greatly undermined the power of the technique. We

propose that the approach outlined here is likely to be most useful

for inspiring novel hypotheses rather than for confirming existing

hypotheses, which means that any such results will be just the first

step in a research program that must also include hypothesis-

driven experimentation.

Another potential limitation of the present work is that the fact

that a number of the parameters in the analyses were set

arbitrarily. While the dimensionality of the topic models was

determined using an automated method, there remain parameter

settings (such as smoothness of the word and topic distributions)

that must be chosen arbitrarily (in our case, we chose them based

on previously published results). The results of the topic model are

quite robust; for example, we saw very similar results when

Figure 7. A clustering denodrogram showing the relationships between the different disorder topics based on their distance in
neural activation space. Euclidean distance was used as the distance metric for clustering, and hierarchical clustering was performed using Ward’s
method. The colored blocks show the four major groupings obtained by cutting the tree at a height of 2.0. Abbreviations: APH: aphasia, DLX:dyslexia,
SLI: specific language impairment, DA: drug abuse, AD:Alzheimer’s disease, DEP:depressive disorder, MDD:major depressive disorder, ANX:anxiety
disorder, PAN: panic disorder, BPD: bipolar disorder, CD: conduct disorder, GAM: gambling, MD: mood disorder, PD: Parkinson’s disease, OCD:
obsessive compulsive disorder, PHO: phobia, EAT: eating disorder, SZ: schizophrenia, OBE: obesity, COC: cocaine related disorder, PSY: psychotic
disorder, PAR: paranoid disorder, SZTY: schizotypal personality disorder, TIC: tic disorder, ALC: alcoholism, ALX: alexia, ADD: attention deficit disorder,
AMN: amnesia, AUT: autism, ASP: Asperger syndrome.
doi:10.1371/journal.pcbi.1002707.g007

Topic Mapping
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performing the topic models on the original set of 4,393 papers

from the earlier paper by Yarkoni et al. compared to the results

from the corpus of 5,809 papers. It is also evident from Figure 5

that there is strong continuity in topics across different dimen-

sionalities, with single topics at lower dimensionalities splitting into

multiple finer-grained topics at higher dimensionalities. We have

chosen model parameters that appear to give sensible results

relative to prior findings, but the possibility remains that different

parameterizations or analysis approaches could lead to different

outcomes; future research will need to explore this question in

more detail. We would also note that some of these limitations may

be offset by the fact that the analyses presented here are almost

fully automated, which removes many possible opportunities for

research bias to affect the results.

Table 1. Canonical variates obtained using sparse canonical correlation analysis on neural activation data for mental concept and
disorder topics.

CV # Mental topics Disorder topics

0 77 (0.25): mood induction 25 (0.40): anxiety_disorder panic_disorder

94 (0.25): reward decision 13 (0.36): depressive_disorder major_depressive_disorder

15 (0.24): reward anticipation 22 (0.35): gambling drug_abuse

40 (0.23): fear generalization 8 (0.35): obesity cocaine_related_disorder

105 (0.23): emotion sadness 14 (0.32): drug_abuse conduct_disorder

1 93 (0.24): emotion valence 10 (0.42): amnesia alzheimers_disease

105 (0.23): emotion sadness 3 (0.39): schizophrenia paranoid_schizophrenia

39 (0.22): valence arousal 9 (0.37): schizophrenia schizotypal_personality_disorder

33 (0.22): memory retrieval 23 (0.32): autism specific_language_impairment

44 (0.21): risk decision 18 (0.30): schizophrenia psychotic_disorder

2 66 (0.27): language syntactic_processing 24 (0.69): dyslexia specific_language_impairment

13 (0.26): language comprehension 11 (0.68): aphasia

107 (0.25): language language_processing 27 (0.20): autism asperger_syndrome

26 (0.25): comprehension language

5 (0.25): word_frequency decision

3 15 (0.29): reward anticipation 0 (0.54): mood_disorder parkinsons_disease

117 (0.27): anticipation feedback 15 (0.41): attention_deficit_disorder

94 (0.27): reward decision 20 (0.39): attention_deficit_disorder conduct_disorder

77 (0.24): mood induction 12 (0.35): drug_abuse gambling

44 (0.23): risk decision 5 (0.24): obsessive_compulsive_disorder drug_abuse

4 113 (0.30): encoding memory 10 (0.77): amnesia alzheimers_disease

101 (0.27): recognition memory 17 (0.60): alcoholism alexia

36 (0.27): memory explicit_memory

79 (0.25): familiarity recognition

7 (0.25): encoding memory

5 129 (0.43): cognition social_cognition 19 (0.66): autism asperger_syndrome

1 (0.34): belief theory_of_mind 27 (0.59): autism asperger_syndrome

108 (0.30): empathy pain 23 (0.36): autism specific_language_impairment

45 (0.28): intention prospective_memory

71 (0.27): narrative discourse

11 58 (0.45): emotion facial_expression 26 (0.57): phobia eating_disorder

49 (0.40): fear emotion 0 (0.44): mood_disorder parkinsons_disease

99 (0.37): facial_expression emotional_expression 17 (0.42): alcoholism alexia

40 (0.30): fear generalization 16 (0.35): schizophrenia

123 (0.28): stress induction 2 (0.30): schizophrenia psychotic_disorder

22 59 (0.41): intelligence morphology 21 (0.70): drug_abuse alzheimers_disease

88 (0.38): focus attention 4 (0.46): psychotic_disorder paranoid_disorder

14 (0.31): association context 7 (0.41): bipolar_disorder schizophrenia

3 (0.29): memory episodic_memory 19 (0.30): autism asperger_syndrome

35 (0.26): hallucination auditory

The top five topics for each canonical variate exceeding a loading value of 0.2 are shown in the table.
doi:10.1371/journal.pcbi.1002707.t001
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Table 2. Canonical variates obtained using sparse canonical correlation analysis directly on document/topic loading distributions
for cognitive and disorder topics.

CV # Mental topics Disorder topics

0 93 (0.35): emotion valence 22 (0.42): gambling drug_abuse

77 (0.32): mood induction 13 (0.42): depressive_disorder major_depressive_disorder

44 (0.31): risk decision 25 (0.41): anxiety_disorder panic_disorder

94 (0.31): reward decision 26 (0.38): phobia eating_disorder

49 (0.29): fear emotion 28 (0.23): borderline_personality_disorder drug_abuse

1 62 (0.71): reading language 24 (0.86): dyslexia specific_language_impairment

72 (0.35): reading language 11 (0.48): aphasia

107 (0.31): language language_processing

5 (0.23): word_frequency decision

2 129 (0.81): cognition social_cognition 19 (0.66): autism asperger_syndrome

58 (0.28): emotion facial_expression 27 (0.49): autism asperger_syndrome

84 (0.20): gaze attention 23 (0.46): autism specific_language_impairment

3 32 (0.47): naming retrieval 11 (1.00): aphasia

107 (0.44): language language_processing

26 (0.32): comprehension language

60 (0.32): auditory speech_production

66 (0.31): language syntactic_processing

4 90 (0.69): inhibition response_inhibition 20 (0.69): attention_deficit_disorder conduct_disorder

11 (0.52): attention sustained_attention 15 (0.66): attention_deficit_disorder

122 (0.27): attention selective_attention

8 (0.21): cognitive_control monitoring

5 33 (0.76): memory retrieval 10 (1.00): amnesia alzheimers_disease

3 (0.36): memory episodic_memory

64 (0.24): retrieval memory

6 35 (0.62): hallucination auditory 1 (0.61): schizophrenia drug_abuse

44 (0.36): risk decision 4 (0.42): psychotic_disorder paranoid_disorder

17 (0.33): verbal_fluency word_generation 6 (0.36): schizophrenia tic_disorder

70 (0.31): memory working_memory 16 (0.29): schizophrenia

14 (0.23): association context 18 (0.27): schizophrenia psychotic_disorder

7 40 (0.71): fear generalization 26 (0.82): phobia eating_disorder

49 (0.55): fear emotion 25 (0.55): anxiety_disorder panic_disorder

73 (0.28): arousal attention

8 77 (0.92): mood induction 13 (0.80): depressive_disorder major_depressive_disorder

93 (0.22): emotion valence 7 (0.57): bipolar_disorder schizophrenia

9 86 (0.56): decision decision_making 22 (0.98): gambling drug_abuse

100 (0.41): choice decision

94 (0.39): reward decision

15 (0.33): reward anticipation

44 (0.33): risk decision

10 98 (0.60): stress association 28 (0.99): borderline_personality_disorder drug_abuse

67 (0.45): maintenance distraction

93 (0.29): emotion valence

105 (0.28): emotion sadness

81 (0.23): hearing auditory

11 78 (0.38): movement motor_control 5 (0.97): obsessive_compulsive_disorder drug_abuse

21 (0.37): interference interference_resolution 0 (0.23): mood_disorder parkinsons_disease

76 (0.35): planning motor_planning

124 (0.34): feedback learning
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Table 2. Cont.

CV # Mental topics Disorder topics

8 (0.27): cognitive_control monitoring

12 75 (0.59): retention consolidation 9 (1.00): schizophrenia schizotypal_personality_disorder

26 (0.34): comprehension language

96 (0.29): context context_memory

1 (0.26): belief theory_of_mind

127 (0.23): memory encoding

13 54 (0.70): desire habit 8 (0.80): obesity cocaine_related_disorder

15 (0.33): reward anticipation 21 (0.43): drug_abuse alzheimers_disease

94 (0.31): reward decision 12 (0.35): drug_abuse gambling

9 (0.28): executive_function attention

65 (0.25): recall humor

14 3 (0.60): memory episodic_memory 17 (1.00): alcoholism alexia

48 (0.44): metaphor meaning

117 (0.25): anticipation feedback

62 (0.23): reading language

125 (0.22): skill learning

15 17 (0.50): verbal_fluency word_generation 6 (1.00): schizophrenia tic_disorder

45 (0.36): intention prospective_memory

111 (0.33): memory working_memory

97 (0.30): awareness consciousness

4 (0.29): cognition recognition

16 70 (0.57): memory working_memory 16 (0.99): schizophrenia

96 (0.33): context context_memory

58 (0.30): emotion facial_expression

10 (0.27): rehearsal memory

74 (0.23): auditory perception

17 4 (0.45): cognition recognition 0 (1.00): mood_disorder parkinsons_disease

128 (0.39): movement focus

51 (0.38): learning sequence_learning

38 (0.35): categorization prototype

124 (0.29): feedback learning

18 18 (0.63): lying deception 14 (1.00): drug_abuse conduct_disorder

64 (0.34): retrieval memory

98 (0.30): stress association

99 (0.24): facial_expression emotional_expression

19 84 (0.50): gaze attention 23 (1.00): autism specific_language_impairment

85 (0.32): inference knowledge

108 (0.29): empathy pain

45 (0.25): intention prospective_memory

4 (0.25): cognition recognition

20 45 (0.46): intention prospective_memory 3 (1.00): schizophrenia paranoid_schizophrenia

35 (0.44): hallucination auditory

21 (0.41): interference interference_resolution

81 (0.27): hearing auditory

3 (0.25): memory episodic_memory

22 8 (0.75): cognitive_control monitoring 12 (1.00): drug_abuse gambling

102 (0.25): action goal

43 (0.25): attention focus

16 (0.22): pain perception
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The present work follows and extends other recent work that

has aimed to mine the relations between mental function and

brain function using coordinate-based meta-analyses. Smith et al.

[23] analyzed the BrainMap database (which is similar to the

database used here, but is created via manual annotation and

thus has lower coverage but greater specificity and accuracy than

the Neurosynth database). This work showed that independent

components analysis applied to the meta-analytic data was able to

identify networks very similar to those observed in resting-state

fMRI time series, and that these could be related to specific

aspects of psychological function via the annotations in the

BrainMap database. Laird et al [24] extended this by showing

that behavioral functions could be clustered together based on

these meta-analytic maps. The present work further extends those

previous studies by showing that the structure of the psychological

domain can be identified in an unsupervised manner using topic

modeling across both cognitive function and mental disorder

domains, and that these can further be used to identify potential

endophenotypes that share common neural patterns across these

two domains. Visual examination of the ICA components

presented in the Smith and Laird papers shows substantial

overlap with the topic maps identified in the present study. In

future work, we hope to directly compare the topic mapping

results with the maps identified in those papers, to further

characterize the utility of each approach.

In summary, we have shown how large neuroimaging and text

databases can be used to identify novel relations between brain,

mind, and mental disorders. The approach developed here has the

potential to enable new discoveries about the neural and cognitive

bases of neuropsychiatric disorders, and to provide empirically-

driven functional characterizations of patterns of brain activation.

The results also highlight the importance of the availability of large

open datasets in cognitive neuroscience to enable discovery-based

science as a complement to hypothesis-driven research.

Materials and Methods

Code to implement all of the analyses reported here, along with

all of the auxiliary files, are available at https://github.com/

poldrack/LatentStructure.

Data extraction
The full text from the Neurosynth corpus was used for the text

mining analyses. The sources of these data as well as the process

for automated extraction of activation coordinates are described in

detail in [9].

Peak image creation
Synthetic activation peak images were created from the

extracted activation coordinates by placing a sphere (10 mm

radius) at each activation location, at 3 mm resolution using the

MNI305 template. Activations detected to be in Talairach space

were first converted to MNI305 coordinates using the Lancaster

transform [25].

Topic modeling
We ran two topic modeling analyses using limited sets of terms

to obtain focused topics in specific domains. In the first, we used

605 mental concept terms from the Cognitive Atlas database

mentioned previously. In the second, we used a set of 55 terms

describing mental disorders; these were obtained by taking the

NIFSTD Dysfunction ontology and removing all terms not

relevant to psychiatric disorders, and then adding a set of missing

terms that described additional disorders listed in the DSM-IV. In

each case, we processed the full text corpus and created restricted

documents containing only terms that were present in the

respective term list (along with synonyms, which were mapped

back to the base term), and then performed topic modeling on

those restricted documents. The median number of terms per

document after filtering was 127 for cognitive terms and 3 for

disease terms.

Topic modeling was performed using latent Dirichlet allocation

[7] as implemented in the MALLET toolbox, version 2.0.6 [26],

using b = 0.1 and a = 50/number of topics; these are the same

values used by [8] in their analysis of PNAS abstracts.

Optimization of topic-word hyperparameters was not used for

the analyses reported here, as it tended to highly inflate the

optimal number of topics.

For each dataset, the optimal number of topics was determined

by performing a grid search across a range of dimensionality

values (from 10 to 250 in steps of 10). Each document set was split

into 8 random sets of documents, and 8 separate models were

trained, in each case leaving out one subset of documents. The

empirical likelihood of the left-out documents was then estimated

using an importance sampling method as implemented in

MALLET [10].

In order to identify the hierarchical relations between topics

across different dimensionalities (as shown in Figure 5), the topic

models from the first crossvalidation fold for each level (10, 50,

100, and 250 topics) were used; because 1/8 of the data were

excluded as test data, these models were thus trained on a total of

5082 documents (using the same documents across all different

dimensionalities). Hierarchical relations between levels were

identified by computing the correlation between the document

loading vectors for each lower-level topic and all higher-level

topics, and then assigning the link according to the maximum

correlation.

Topic mapping
Topic maps were created separately for each topic by first

computing a voxelwise chi-squared statistic for the association

across documents between activation of the voxel (which is a

binary feature due to the use of a spherical kernel) and the loading

of that document on that topic (after thresholding the topic loading

Table 2. Cont.

CV # Mental topics Disorder topics

54 (0.21): desire habit

23 62 (0.83): reading language 24 (1.00): dyslexia specific_language_impairment

72 (0.48): reading language

The top five topics for each canonical variate exceeding a loading value of 0.2 are shown in the table.
doi:10.1371/journal.pcbi.1002707.t002
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value p.0 and binarizing). This thresholding resulted in an mean

number of documents per topic of 292 for the Cognitive Atlas

analysis, and 177 for the neuropsychiatric disorders analysis. The

voxelwise chi-squared p-value maps were then corrected for false

discovery rate at qv0.01 using the FSL fdr tool. Pearson

correlation maps were also stored for use in the conjoint mapping

and visualization.

Disorder clustering
Disorders were clustered using hierarchical clustering (Ward’s

method) applied to the Euclidean distance matrix computed across

voxels for the disorder-based topic maps (Pearson r values).

Canonical correlation analysis
Canonical correlation analysis (CCA) was used to identify sets of

mental function and disorder topics that were closely associated in

neural activation space. In order to reduce the dimensionality of

the data, the topic maps (Pearson r values) were first sampled from

the original 3 mm space into 6 mm voxels. These datasets were

then submitted to penalized canonical correlation analysis [15]

using the PMA package in R (http://cran.r-project.org/web/

packages/PMA/). The dimensionality of the decomposition was

specified as 29 (i.e., the number of disorders); canonical variates

were selected from this set for further analysis by thresholding the

correlations between u and v vectors at rw0.5. Penalty parameters

were estimated using the permutation approach implemented in

the CCA.permute function in the PMA package (best penal-

ty = 0.63 for both dimensions). Loading vectors for the canonical

variates (i.e., u and v vectors) were constrained to be positive, in

order to make the interpretation of the results clearer. The CCA

analysis on document/topic mappings was performed identically,

except that the document/topic vectors were used directly rather

than mapping them into the neural activation space.

Supporting Information

Table S1 Complete list of topics identified through application

of latent Dirichlet allocation to the text corpus filtered for

Cognitive Atlas terms. The top 5 words shown for each topic

are those which had the highest loading for that topic across

documents. The number of documents that loaded on each topic is

also listed.

(PDF)

Table S2 Complete list of topics identified through application

of latent Dirichlet allocation to the text corpus filtered for mental

disorder terms. The top 5 words shown for each topic are those

which had the highest loading for that topic across documents.

The number of documents that loaded on each topic is also listed.

(PDF)
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